Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Arq. Inst. Biol. (Online) ; 89: e00212021, 2022. tab, graf
Article in English | VETINDEX, LILACS | ID: biblio-1393890

ABSTRACT

Lettuce bacterial leaf spot caused by Xanthomonas campestris pv. vitians is an aggressive disease that is difficult to control. So far there are no reports of the reaction of biofortified lettuce genotypes to different isolates of the bacteria. Thus, the objective was to evaluate the aggressiveness of X. campestris pv. vitians, as well as the reaction of biofortified lettuce genotypes to bacterial spot. Two experiments were performed in two distinct seasons (winter and summer), in greenhouse at the Vegetable Experimental Station of the Federal University of Uberlândia (UFU). The experimental design in both experiments was a randomized block design, in a factor scheme of 5 × 4 (five genotypes and four strains), with four repetitions. Were evaluated the severity and the area under the disease progress curve. In general, the biofortified lettuce 'Uberlândia 10000' was more resistant to most bacterial strains in the summer cultivation, and in the winter period UFU 'Crespa 206'. The commercial cultivar Robusta was the most susceptible to the strains during both seasons. The UFU E125 strain was the most aggressive for most genotypes in both seasons.


Subject(s)
Xanthomonas campestris/genetics , Lettuce/genetics , Genotype , Vegetables
2.
Electron. j. biotechnol ; 31: 1-9, Jan. 2018. ilus, graf, tab
Article in English | LILACS | ID: biblio-1022023

ABSTRACT

Background: Lettuce is a globally important leafy vegetable and a model plant for biotechnology due to its adaptability to tissue culture and stable genetic transformation. Lettuce is also crucial for functional genomics research in the Asteraceae which includes species of great agronomical importance. The development of transgenic events implies the production of a large number of shoots that must be differentiated between transgenic and non-transgenic through the activity of the selective agent, being kanamycin the most popular. Results: In this work we adjusted the selection conditions of transgenic seedlings to avoid any escapes, finding that threshold concentration of kanamycin was 75 mg/L. To monitor the selection system, we studied the morphological response of transgenic and non-transgenic seedlings in presence of kanamycin to look for a visual morphological marker. Several traits like shoot length, primary root length, number of leaves, fresh weight, and appearance of the aerial part and development of lateral roots were affected in non-transgenic seedlings after 30 d of culture in selective media. However, only lateral root development showed an early, qualitative and reliable association with nptII presence, as corroborated by PCR detection. Applied in successive transgenic progenies, this method of selection combined with morphological follow-up allowed selecting the homozygous presence of nptII gene in 100% of the analyzed plants from T2 to T5. Conclusions: This protocol allows a simplified scaling-up of the production of multiple homozygous transgenic progeny lines in the early generations avoiding expensive and time-consuming molecular assays.


Subject(s)
Plants, Genetically Modified/genetics , Lettuce/genetics , Selection, Genetic , Kanamycin/analysis , Polymerase Chain Reaction , Lettuce/chemistry , Seedlings , Homozygote
3.
Rev. colomb. biotecnol ; 13(1): 156-162, jul. 2011. tab, graf, ilus
Article in Spanish | LILACS | ID: lil-600587

ABSTRACT

El uso de bioinoculantes a base de microorganismos con potencial biofertilizante representa una alternativa económicamente viable y de producción limpia para el sector agrícola. El objetivo del presente trabajo fue evaluar el efecto biofertilizante de un preparado elaborado con residuos sólidos vegetales (RSV) procedentes del mercado y la bacteria nativa diazótrofa Azotobacter A15M2G. Se elaboraron biopreparados utilizando diferentes concentraciones de bacteria (106, 107 y 108 UFC) en un medio de cultivo obtenido a partir del 25% p/v de cada uno de los siguientes RSV: Brassica oleracea (repollo), Lactuca sativa (lechuga) y Allium fistulosum (cebollín). Los biopreparados fueron evaluados en plantas de rábano (Rhapanus sativus) en invernadero, utilizando un diseño estadístico completamente al azar de 5 tratamientos con 3 repeticiones: T1, control; T2, semillas pregerminadas tratadas con RSV al 25% p/v; T3, semillas pregerminadas con bioinoculante de 106 UFC; T4, semillas pregerminadas con bioinoculante de 107 UFC; T5, semillas pregerminadas con bioinoculante de 108 UFC. Se evaluó: número de hojas, área foliar, longitud de la planta, longitud de la raíz y peso seco de toda la planta (ensayos por triplicado). Se observó un incremento altamente significativo en peso seco para T5 (0,88 g) y T4 (1,10 g); y diferencias significativas en el área foliar, para los mismos tratamientos, con un valor superior a 2000 cm2. El biopreparado con bacterias nativas y RSV mejoró el crecimiento y desarrollo de las plantas de rábano, pudiéndose dar un valor agregado a estos residuos y de esta manera obtener un biofertilizante potencialmente utilizable en otros cultivos.


The use of bioinoculantes from microorganisms with biofertilizer potential, represents an economically viable alternative and of clean production for the agricultural sector. The aim of this study was to evaluate the effect of biofertilizer preparation obtained from vegetable solid waste (RSV) of the market and the native bacteria Azotobacter A15M2G diazotroph.Biological cultures were prepared using different inoculum concentrations, 106, 107 y 108 UFC in a culture medium obtained from 25% w / v of each of the following substrates: Brassica oleracea (cabbage), Lactuca sativa (lettuce) and Allium fistulosum (chives). The microbial inoculants were evaluated in radish plants (Rhapanus sativus) in greenhouse using a completely randomized design of 5 treatments with 3 replicates: T1, pre-germinated seeds without any treatment; T2, pre-germinated seeds treated with the dye waste vegetables 25% w / v; T3, pre-germinated seeds treated with bacterial concentration bioinoculants to 106 UFC; T4, pre-germinated seeds treated with bacterial concentration bioinoculants to 107 UFC, and T5, pre-germinated seeds treated with bacterial concentration bioinoculants to 108 UFC. Assessed variables were: number of leaves, leaf area, plant length, root length and dry weight of the entire plant (all assays in triplicate). The results showed a highly significant increase in dry weight, for T5 (0.88 g) and T4(1.10 g); and significant differences in leaf area for the same treatments, with a value greater than 2000 cm2, compared to others. The biopreparado from native bacteria and RSV improved the growth and development of the radish plants, being able to give a added value to these residues and to obtain a potentially usable biofertilizer in other cultures.


Subject(s)
Lettuce/growth & development , Lettuce/adverse effects , Lettuce/enzymology , Lettuce/physiology , Lettuce/genetics , Lettuce/immunology , Lettuce/metabolism , Lettuce/microbiology , Lettuce/chemistry , Azotobacter/isolation & purification , Azotobacter/growth & development , Azotobacter/enzymology , Azotobacter/physiology , Azotobacter/genetics , Azotobacter/immunology , Azotobacter/metabolism , Azotobacter/chemistry
4.
Braz. j. infect. dis ; 12(6): 469-471, Dec. 2008. ilus
Article in English | LILACS | ID: lil-507443

ABSTRACT

The obtainment of transgenic edible plants carrying recombinant antigens is a desired issue in search for economic alternatives viewing vaccine production. Here we report a strategy for genetic transformation of lettuce plants (Lactuca sativa L.) using the surface antigen HBsAg of hepatitis B virus. Transgenic lettuce seedlings were obtained through the application of a regulated balance of plant growth regulators. Genetic transformation process was acquired by cocultivation of cotyledons with Agrobacterium tumefaciens harboring the recombinant plasmid. It is the first description of a lettuce Brazilian variety "Vitória de Verão" genetically modified.


Subject(s)
Hepatitis B Surface Antigens/genetics , Hepatitis B Vaccines/genetics , Lettuce/genetics , Plants, Genetically Modified/genetics , DNA, Recombinant , Lettuce/immunology , Plant Growth Regulators , Plants, Genetically Modified/immunology , Seedlings/genetics , Seedlings/immunology , Vaccines, Edible
5.
Genet. mol. res. (Online) ; 1(1): 64-71, Mar. 2002.
Article in English | LILACS | ID: lil-417651

ABSTRACT

Resistance to the root-knot nematodes Meloidogyne spp. would be a valuable attribute of lettuce Lactuca sativa L. cultivars grown in tropical regions. The looseleaf lettuce 'Grand Rapids' is resistant to both M. incognita and M. javanica. Resistance to M. incognita has a high heritability, under the control of a single gene locus, in which the 'Grand Rapids' allele, responsible for resistance (Me), has predominantly additive gene action, and has incomplete penetrance and variable expressivity. We studied the inheritance of the resistance of 'Grand Rapids' (P(2)) to M. javanica in a cross with a standard nematode-susceptible cultivar Regina-71 (P(1)). F(1)(Regina-71 x Grand Rapids) and F(2) seed were obtained, and the F(2) inoculated, along with the parental cultivars, with a known isolate of M. javanica to evaluate nematode resistance. A high broad sense heritability estimate (0.798) was obtained for gall indices. Class distributions of gall indices for generations P(1), P(2), and F(2) were in agreement with theoretical distributions based on a monogenic inheritance model for the range of assumed degrees of dominance between approximately -0.20 and 0.20. M. javanica resistance appears to be under control of a single gene locus, with predominantly additive gene action. Whether or not the Grand Rapids allele imparting resistance to M. javanica is the same Me allele imparting resistance to M. incognita remains to be determined


Subject(s)
Animals , Lettuce/genetics , Lettuce/parasitology , Quantitative Trait, Heritable , Tylenchoidea , Genetic Variation , Models, Genetic , Plant Roots/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL